Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice.

نویسندگان

  • Takayuki Akimoto
  • Thomas J Ribar
  • R Sanders Williams
  • Zhen Yan
چکیده

Mammalian skeletal muscles undergo adaptation in response to alteration in functional demands by means of a variety of cellular signaling events. Previous experiments in transgenic mice showed that an active form of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) is capable of stimulating peroxisome proliferator-activated receptor gamma-coactivator 1alpha (PGC-1alpha) gene expression, promoting fast-to-slow fiber type switching and augmenting mitochondrial biogenesis in skeletal muscle. However, a role for endogenous CaMKIV in skeletal muscle has not been investigated rigorously. We report that genetically modified mice devoid of CaMKIV have normal fiber type composition and mitochondrial enzyme expression in fast-twitch skeletal muscles and responded to long-term (4 wk) voluntary running with increased expression of myosin heavy chain type IIa, myoglobin, PGC-1alpha, and cytochrome c oxidase IV proteins in plantaris muscle in a manner similar to that of wild-type mice. Short-term motor nerve stimulation (2 h at 10 Hz) likewise increased PGC-1alpha mRNA expression in tibialis anterior muscles in both Camk4(-/-) and wild-type mice. In addition, we have confirmed that no detectable CaMKIV protein is expressed in murine skeletal muscle. Thus CaMKIV is not required for the maintenance of slow-twitch muscle phenotype and endurance training-induced mitochondrial biogenesis and IIb-to-IIa fiber type switching in murine skeletal muscle. Other protein kinases sharing substrates with constitutively active CaMKIV may function as endogenous mediators of activity-dependent changes in myofiber phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle adaptation in response to voluntary running in Ca / calmodulin-dependent protein kinase IV-deficient mice

Akimoto, Takayuki, Thomas J. Ribar, R. Sanders Williams, and Zhen Yan. Skeletal muscle adaptation in response to voluntary running in Ca /calmodulin-dependent protein kinase IV-deficient mice. Am J Physiol Cell Physiol 287: C1311–C1319, 2004. First published June 30, 2004; doi:10.1152/ajpcell.00248.2004.—Mammalian skeletal muscles undergo adaptation in response to alteration in functional deman...

متن کامل

Calmodulin and its roles in skeletal muscle function.

The purpose of this review is to describe the importance of calmodulin as a mediator of the effects of calcium ions in living systems, particularly in the process of skeletal muscle contraction. Calmodulin is a low molecular weight, acidic, calcium binding protein which mediates the Ca2+ regulation of a wide range of physiological processes throughout eukaryotic organisms. At low free Ca2+ conc...

متن کامل

Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice.

The Ca(2+)/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr) is a key effector of neuronal Ca(2+) signaling; its function was analyzed by targeted gene disruption in mice. CaMKIV/Gr-deficient mice exhibited impaired neuronal cAMP-responsive element binding protein (CREB) phosphorylation and Ca(2+)/CREB-dependent gene expression. They were also deficient in two forms of synaptic plastic...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

Female fertility is reduced in mice lacking Ca2+/calmodulin-dependent protein kinase IV.

Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) is a serine/threonine protein kinase with limited tissue distribution. CaMKIV is highly expressed in the testis, where it is found in transcriptionally inactive elongating spermatids. We have recently generated mice deficient in CaMKIV. In the absence of CaMKIV, the exchange of sperm nuclear basic proteins in male spermatids is impaired, resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 287 5  شماره 

صفحات  -

تاریخ انتشار 2004